Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah Ali, ${ }^{\text {a* }}$ S. Nadiah A.

 Halim, ${ }^{\text {a }}$ Nur Ashikin Khamis, ${ }^{\text {a }}$ M. Sukeri Yusof ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: hapipah@um.edu.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.105$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(p-Methoxybenzoyl)- N^{\prime}-(o-methoxyphenyl)thiourea

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, the o-methoxyphenyl and p-methoxybenzoyl groups are cis and trans, respectively, with respect to the S atom across the $\mathrm{C}-\mathrm{N}$ bonds. The dihedral angle between the central NCSN thiourea fragment and the o-methoxyphenyl group is $63.66(8)^{\circ}$, while that with the p-methoxybenzoyl group is $40.30(7)^{\circ}$. The molecules are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bonding interactions, forming zigzag polymeric chains along the a axis.

Comment

Some substituted thiourea compounds have found application in the rubber and dye industries (Ramadas et al., 1993), as well as exhibiting potential as biologically active compounds (Baruah et al., 2002). In the title compound, (I), substituted aryl groups are attached to each of the terminal N atoms of the thiourea moiety (Fig. 1). The molecule is discrete, with the o-methoxyphenyl and p-methoxybenzoyl groups located cis and trans, respectively, to the S atom across the $\mathrm{C} 8-\mathrm{N} 2$ and C8-N1 bonds.

The structure (Fig. 1) and bond dimensions of (I) (Table 1) are in agreement with other substituted benzoylthioureas, such as N^{\prime}-benzoyl- N - p-bromophenylthiourea (Yamin \& Yusof, 2003a), N^{\prime}-benzoyl- N-phenylthiourea (Yamin \& Yusof, 2003b) and N-benzoyl- N^{\prime}-(3,4-dimethylphenyl)thiourea (Shanmuga Sundara Raj et al., 1999). The central thiourea [S1/ $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9$; maximum deviation at atom N 10.052 (1) \AA] and o-methoxyphenyl [O3/N2/C9-C14; maximum deviation at C9-0.033 (2) A] fragments are each planar. The presence of a methoxy group at the ortho position causes the dihedral angle between the o-methoxyphenyl (C9-C14/O3/C16) and the central thiourea ($\mathrm{S} 1 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9$) fragments to increase from $7.52(9)^{\circ}$ in the unsubstituted N^{\prime}-benzoyl- N-phenylthiourea (Yamin \& Yusof, 2003b) to 63.66 (8) ${ }^{\circ}$ in (I). Similarly, the dihedral angle of $40.30(7)^{\circ}$ between the p-methoxybenzoyl and the central thiourea fragments is larger than that in N^{\prime} -benzoyl- N-phenylthiourea [28.78 (9) ${ }^{\circ}$], while the inclination between the aryl groups of $29.28(9)^{\circ}$ is comparable with the dihedral angle observed in N-phenyl- N^{\prime}-benzoylthiourea [33.3 (1) ${ }^{\circ}$; Yamin \& Yusof, 2003b].

There is one intramolecular hydrogen bond in (I), N2$\mathrm{H} 2 A \cdots \mathrm{O} 1$ (Table 2), which forms the six-membered pseudo-
ring ($\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1-\mathrm{C} 7$). In the crystal structure, the molecules are linked by intermolecular hydrogen-bonding interactions, $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2^{\mathrm{ii}}$ [symmetry codes: (i) $1-x, 1-y,-z$; (ii) $2-x, 1-y,-z]$ (Table 2) to form zigzag polymeric chains along the a axis (Fig. 2).

Experimental

A solution of o-methoxyaniline $(0.50 \mathrm{~g}, 4.07 \mathrm{mmol})$ in acetone (50 ml) was added dropwise to an acetone solution (50 ml) containing an equimolar quantity of p-methoxybenzoyl thiocyanate (0.78 g , 4.07 mmol) in a round-bottomed flask. The solution was refluxed for ca 1 h and then cooled in ice. The white precipitate which formed was filtered off and washed with distilled water-ethanol and then dried under vacuum. The solid was filtered and recrystallized from pyridine (m.p. 434-435 K). Analysis, found: C 60.43 , H 4.80 , N 8.62%; calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C} 60.74, \mathrm{H} 5.10, \mathrm{~N} 8.85 \%$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=316.37$
Triclinic, $P \overline{1}$
$a=7.832(1) \AA$
$b=9.151(2) \AA$
$c=12.201(3) \AA$
$\alpha=92.68(4)^{\circ}$
$\beta=104.56(4)^{\circ}$
$\gamma=113.45(3)^{\circ}$
$V=765.8(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.372 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 3149
reflections
$\theta=1.8-26.5^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.49 \times 0.48 \times 0.40 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: multi-scan

$$
R_{\mathrm{int}}=0.017
$$

(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.898, T_{\text {max }}=0.915$
8107 measured reflections
3149 independent reflections

$$
2927 \text { reflections with } I>2 \sigma(I)
$$

$\theta_{\text {max }}=26.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.06$
3149 reflections
201 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C8	$1.6681(15)$	O2-C3	$1.3587(18)$
O1-C7	$1.2225(18)$		
C7-N1-C8	$127.74(12)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$116.56(12)$
C8-N2-C	$126.65(12)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$115.77(12)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$121.87(13)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$125.20(11)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$121.56(13)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$119.03(10)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.93	$2.630(2)$	137
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.70	$3.518(2)$	159
C14-H14 O^{ii}	0.93	2.52	$3.431(2)$	167

[^0]

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

Figure 2
A packing diagram for (I), viewed along the a axis. Dashed lines indicate the $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2$ hydrogen bonds.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government, and both the University of Malaya and Universiti Kebangsaan Malaysia for research grants IRPA No. 09-02-03-0125 and IRPA No. 09-02-02-0163, respectively.

References

Baruah, H. L., Reactor, C. M., Monier, S. \& Bierbach U. (2002). Biochem. Pharmacol. 64, 191-200.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ramadas, K., Srinivasan, N. \& Janarthanan, N. (1993). Tetrahedron Lett. 34, 6447-6450.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, M. Y. \& Yusof, M. S. M. (2003a). Acta Cryst. E59, o340-o341.
Yamin, M. Y. \& Yusof, M. S. M. (2003b). Acta Cryst. E59, o151-o152.

[^0]: Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $2-x, 1-y,-z$.

